Journal of Chromatography, 534 (1990) 291–294 Biomedical Applications Elsevier Science Publishers B V , Amsterdam

CHROMBIO 5510

Letter to the Editor

Determination of pyridostigmine plasma concentrations by high-performance liquid chromatography

Sir,

Several methods have been reported for the determination of pyridostigmine plasma concentrations, including spectrophotometry [1], enzymic determination [2], radioimmunoassay [3] and gas-liquid chromatography [4–7] as well as sensitive and specific high-performance liquid chromatographic (HPLC) assays [8–13]. Easy and rapid pyridostigmine plasma extraction procedures using Sep-Pak C₁₈ cartridges are described by Ellin *et al.* [12], with a detection limit of 40 ng/ml by subsequent HPLC separation using an analytical C₁₈ column. Lower limits of detection (10 ng/ml) can be obtained if cation-exchange extraction is combined with HPLC separation using an analytical cyano column [13].

In our experience, a limit of detection of ca. 1–2 ng/ml (at a signal-to-noise ratio of 2) can be obtained when slightly modified extraction procedures according to Ellin *et al.* [12] are combined with the HPLC separation reported by Matsunaga *et al.* [13].

EXPERIMENTAL

ng/ml by assaying plasma samples spiked with known pyridostigmine concentrations. The intra- and inter-day precisions of the assay were estimated by measuring plasma standards with 10 and 50 ng/ml pyridostigmine at the first day (n = 10) and on the nine following days.

A 2-ml volume of plasma was diluted with 4 ml of 0.5 *M* phosphate buffer (pH 10.6) and passed through an activated (5 ml of methanol, 5 ml of water) Sep-Pak C_{18} cartridge (Waters, Eschborn, F.R.G.). Afterwards, the cartridge was purged with 5 ml of 0.05 *M* phosphate buffer (pH 10.6) and 5 ml of methanol. Pyridostigmine was then eluted with 3 ml of 1% acetic acid in methanol and, after evaporation to dryness (nitrogen, 60°C), the residue was redissolved with 60 μ l of water. Aliquots of 50 μ l were injected into the HPLC column

RESULTS AND CONCLUSIONS

Fig. 1 shows chromatograms of a blank plasma sample (A) and of a plasma sample withdrawn from a patient who had 2 h previously received 60 mg of pyridostigmine (B). The drug concentration calculated from this chromatogram was 16 ng/ml The calibration curve was linear in the range studied, and has a slope of 0.941 and an y-intercept of -0.0745; r = 0.999 [y = pyridostigmine plasma concentration (ng/ml), and x = peak height (mm)]. The lower limit of detection was ca. 1-2 ng/ml at a signal-to-noise ratio of 2.

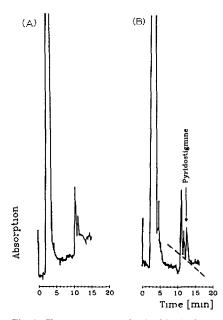


Fig 1. Chromatograms of (A) a blank plasma sample and (B) a plasma sample withdrawn from a patient 2 h after administration of 60 mg of pyridostigmine. The drug concentration calculated from this chromatogram was 16 ng/ml. The pyridostigmine peak height was determined by the tangent skimming technique

TABLE I

Concentration of pyridostigmine (ng/ml)		Accuracy ^a — (%)	
Spiked	Found	(70)	
5	5	0 0	
10	10	0 0	
20	19	50	
50	48	4 0	
100	99	1.0	
200	204	2.0	
Mean±SD.		2.0 ± 2.1	

ACCURACY OF THE ASSAY

^a Calculated according to ref. 14

The accuracy of the method is shown in Table I: the theoretical concentrations (spiked concentration) agreed well with the assayed concentrations (found concentration), with an accuracy of $2 \pm 2.1\%$ (mean \pm S.D.).

For intra- and inter-day precision studies, the mean concentration, S.D. and coefficient of variation (C.V.) are shown in Table II.

This method combines the extraction procedures of Ellin *et al.* [12] with the HPLC separation reported by Matsunaga *et al.* [13]. The lower limit of detection is *ca.* 10–40-fold below that of both assays, and in clinical routine the method allowed reliable and reproducible determination of pyridostigmine plasma con-

TABLE II

INTRA- AND INTER-DAY PRECISION FOR PYRIDOSTIGMINE

	Spiked concentration (ng/ml)	Found concentration (mean \pm S D, $n = 10$) (ng/ml)	C.V. (%)	
Intra-day	10	99±11	111	
	50	50.0 ± 2.2	4 4	
Inter-day	10	10.5 ± 1.0	9.5	
	50	49.8 ± 2.3	4.6	

HC MICHAELIS

centrations in more than fifty myasthenia gravis patients, also in a low concentration range of 2–10 ng/ml.

Department of Pharmacology and Toxicology, University of Göttingen, Robert-Koch-Strasse 40, D-3400 Göttingen (F.R G.)

- 1 H Coper, G. Dehyle and K. Dross, Z Klin Chem. Klin Biochem., 12 (1974) 273
- 2 A Shatkay, Anal Chim Acta, 206 (1988) 57
- 3 H. G Meyer, B. J Lukey, R. T. Gepp, R P Corpuz and C N Lieske, J Pharm. Exp. Ther., 247 (1988) 432.
- 4 K Chan, N. E. Williams, J. D Baty and T N Calvey, J. Chromatogr., 120 (1976) 349
- 5 S L Cohan, J. L. W Pohlmann, J Miszewski and D S O'Doherty, Neurology, 26 (1976) 536
- 6 J. L. W Pohlmann and S L Cohan, J. Chromatogr, 131 (1977) 297
- 7 K Chan and A Deghan, J Pharm Methods, 4 (1978) 311
- 8 G. J Yakatan and J-Y Tien, J Chromatogr, 164 (1979) 399.
- 9 M G M. De Ruyter, R Cronnelly and N. Castagnoli, Jr., J Chromatogr., 183 (1980) 193
- 10 F Schumm, H J. Gaertner, G Wiatr and J Dichgans, Fortschr Neurol. Psychiatry, 53 (1985) 201.
- 11 O Yturralde, R -Y Lee, L. Z. Benet, L Fleckenstein and E. T L Lin, J. Liq Chromatogr, 10 (1987) 2231
- 12 R I Ellin, P Zvirblis and M R Wilson, J. Chromatogr., 228 (1982) 235
- 13 H. Matsunaga, T. Suehiro, T. Saita, Y. Nakano, M. Mori, K. Takata and K. Oda, J. Chromatogr., 422 (1987) 353
- 14 R H. Eggers and J Bircher, Eur J Clin Pharmacol., 34 (1988) 319

(First received May 22nd, 1990; revised manuscript received August 6th, 1990)